THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010H/I/J University Mathematics 2017-2018 Assignment 5

Due Date: 22 Mar 2018 (Thursday)

1. Let
$$f(x) = \frac{|x|(x+16)}{x-2}$$
 for $x \neq 2$.

(a) (i) Is f(x) differentiable at x = 0? Why?

(ii) Find f'(x) and f''(x) for $x \neq 0$.

- (b) Solve
 - (i) f'(x) > 0 and f'(x) < 0;
 - (ii) f''(x) > 0 and f''(x) < 0.
- (c) Find the relative extreme point(s) and point(s) of inflection of the graph y = f(x).
- (d) Find all asymptote(s) of the graph y = f(x).
- (e) Sketch the graph of y = f(x).
- 2. Evaluate the following limits.

(a)
$$\lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{x^2}$$

(b)
$$\lim_{x \to 0} \frac{\tan^{-1} x}{2x}$$

(c)
$$\lim_{x \to 0^+} x(\ln x)^2$$

(d)
$$\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{x}{x-1}\right)$$

(e)
$$\lim_{x \to +\infty} \left(\frac{\sin^2 x}{x}\right)^{\frac{1}{x^2}}$$

(f)
$$\lim_{x \to 1} x^{\frac{1}{1-x}}$$

3. Find the Taylor polynomial of degree 3 of the following functions at x = 0.

- (a) $f(x) = e^{\cos 2x}$
- (b) $f(x) = e^{2x} \ln(1-x)$
- (c) $f(x) = \sec x$
- 4. Find the Taylor series of the following functions at x = 0.
 - (a) $f(x) = \frac{4}{2 x^2}$ (b) $f(x) = \sqrt{1 + x}$ (c) $f(x) = \ln(4 + 3x)$ (d) $f(x) = \frac{2x + 3}{(x + 1)(x + 3)}$ (Hint: Resolve it into partial fractions first.)

5. Let $f(x) = \frac{1}{1-x}$.

By considering f'(x), f''(x), find the Taylor series generated by $\frac{1}{(1-x)^2}$ and $\frac{1}{(1-x)^3}$ at x = 0.

- 6. By considering the Taylor series of $\sin(x^2) x \sin x$, find $\lim_{x \to 0} \frac{\sin(x^2) x \sin x}{x^4}$.
- 7. Let $f(x) = (1 + x^2) \sin(x^2)$
 - (a) Find the Taylor series generated by f(x) at x = 0.
 - (b) Hence, find $f^{(100)}(0)$ and $f^{(101)}(0)$.